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Abstract

A high-order projection scheme was developed for the study of chemically reacting flows in the low-

Mach number limit. The numerical approach for the momentum transport uses a combination of

cell-centered/cell-averaged discretizations to achieve a fourth-order formulation for the pressure pro-

jection algorithm. This scheme is coupled with a second-order in time operator-split stiff approach

for the species and energy equations. The code employs a fourth-order, block-structured, adaptive

mesh refinement approach to address the challenges posed by the large spectrum of spatial scales

encountered in reacting flow computations. Results for advection-diffusion-reaction configurations

are used to illustrate the performance of the numerical construction.

Keywords:

1. Introduction

Since the detailed structure and various non-equilibrium characteristics of chemically reacting

systems are difficult and costly to obtain experimentally, numerical simulation is an important tool

in complementing experimental investigations of combustion processes. Chemical reacting systems

based on hydrocarbon fuels typically exhibit a large spectrum of characteristic spatial and temporal

scales. The complexity of kinetic models even for simple hydrocarbon fuels compounds this problem

making multidimensional numerical simulations difficult even for laboratory scale configurations.

These difficulties are commonly addressed in a variety of ways. For low speed flows, one may

adopt a low Mach number approximation of the Navier-Stokes equations [1] for the momentum

transport. This approximation assumes that acoustic waves travel at infinite speed, a justifiable

assumption in many low-speed flows. One can also exploit the structure of the governing equations

and adopt an operator-split construction, performing the transport and reactive time-advancement
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via specialized integrators [2]. In problems where fine structures exist only in a small fraction of

the domain e.g. in laminar jet flames, one may employ adaptive mesh refinement (AMR) [3] to

concentrate resolution only where needed [4, 5, 6, 7], while maintaining a coarse mesh resolution

elsewhere.

We have recently developed a numerical model that aims to address some of the challenges posed

by the use of AMR for reacting flow computations. In order to reduce the number of grid points

and the number of refinement levels in the computational mesh hierarchy, we employ high-order

stencils to discretize the transport equations and to interpolate between the computational blocks

on adjacent mesh levels. Further, we employ a projection scheme for the momentum transport on

a uniform mesh, that is coupled with the adaptive mesh solution of the scalar transport equations.

This hybrid construction is driven by a number of practical considerations, as further detailed in

the next section. For ease of implementation with AMR, we employ an extended-stability Runge

Kutta Chebyshev (RKC) scheme [8] to time-advance the system; the timestep size is constrained by

the Fourier number (“diffusion CFL”). The 2D numerical scheme developed in this investigation is

designed to work with block-structured adaptively refined meshes (alternatively, structured adaptive

mesh refinement, SAMR). The 3D implementation of the numerical construction is underway and

results will be presented in a subsequent paper.

The paper is structured as follows. In Section 1.1 we describe SAMR and show why its details

prevent a straightforward adoption of high-order spatial discretizations. We also describe the basic

structure of the algorithm pursued here, in terms of the mesh structures used for different variables.

In Section 2, we review current research on the development of high-order methods for SAMR

computations. This also includes a review of literature on the pairing of interpolation and derivative

stencils. In Section 3 we develop the numerical scheme, including a novel construction for solving

the pressure equation, which follows an existing finite volume construction. In Section 4, we present

results. We demonstrate that we preserve second-order accuracy in time and achieve fourth-order in

space on mesh hierarchies. Numerical experiments are conducted on canonical advection-diffusion

configurations, 1D premixed flames and a 2D interaction of a vortex pair with a planar flame.

Conclusions are in Section 5.
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1.1. SAMR and the Statement of the Problem

A detailed description of SAMR can be found in [3]; we provide a summary here. SAMR meshes

are generally employed in discretizing rectangular domains. A relatively coarse Cartesian mesh is

laid and various field variables (e.g., temperature, species mass fractions) are initialized on it. The

mesh is generally too coarse to properly resolve all structures and based on an error metric (often

a threshold on a spatial derivative), grid cells requiring further refinement are marked. These grid

cells are collated into rectangular patches and a finer grid (often twice as dense as the initial grid,

obtained by splitting each cell in half in each dimension) is described on it. Since regions requiring

refinement can be disjoint, a multitude of patches may be formed; they are referred to as children

patches. This refinement procedure is performed recursively, until a hierarchy of patches is formed.

The bottom level of the hierarchy (often called the zeroth level) is the original coarse mesh. Note

that children patches are not embedded in the parent mesh but rather overlayed on it; thus the grid

hierarchy is a set of rectangular Cartesian meshes. Also note that children patches obtained in this

manner may abut but do not intersect their siblings.

The rectangular nature of the patches and the Cartesian mesh allows the evaluation of high

order stencils in a straightforward manner. A layer of “ghost” cells are added to each patch on

each refinement level to allow the use of symmetric stencils. Ghost cells are initialized by copying

the corresponding values from adjacent patches on the same refinement level. Ghost cells, that

do not overlap patches with the same refinement, are initialized by interpolating the values from

immediately coarser levels. Note that coarse-fine interpolations have to be performed with care;

they have the potential to destroy the order of accuracy, especially since the interpolated values are

directly (and only) used to calculate derivatives.

The adaptive nature of SAMR arises from the fact that the process of identifying cells requiring

refinement (followed by the addition of finer patches) can be performed periodically, allowing the

simulation to track steep gradients, while simultaneously coarsening regions which no longer require

fine patches. A recursive “time-refinement” [3, 9] is used to advance the solution on the mesh

hierarchy.

The development of a finite-difference numerical scheme that combines RKC, fourth-order spa-

tial accuracy and a projection scheme in a SAMR context has required significant algorithmic

development and has progressed in stages. In [9], we coupled RKC with SAMR and fourth-order
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spatial discretizations to solve a reaction-diffusion system on SAMR meshes. Using a non-stiff

H2 − air chemical mechanism we empirically demonstrated that the desired spatial and temporal

accuracies could be achieved. In [10], we investigated how high-order interpolation and derivative

stencils ought to be paired in order to achieve a desired order of convergence. In this paper, we

bring together these results to construct a numerical scheme that includes a projection method to

solve the low Mach approximation of the Navier-Stokes equations within the context of reacting

flows. We also demonstrate the method with a methane-air chemical mechanism.

In this paper, we address the challenge of coupling the high-order approach for solving reaction-

diffusion systems in [9, 10] to a projection method for solving the low Mach number form of the

Navier-Stokes equations. We implement a construction in which the momentum equations are

discretized and solved on a uniform mesh only, and are coupled to the solution of the species con-

servation and energy equations on an adaptive mesh hierarchy. This construction is driven by a

number of practical considerations. A key factor is that we are primarily concerned with detailed

computations of reacting flows with complex (and stiff) chemical kinetics; such that we typically

handle hundreds of species. As a result, the momentum solution for the velocity and pressure

fields is typically responsible for a small fraction of the overall computational cost per mesh cell.

Further, since, in many low speed reacting flows of interest, the smallest relevant spatial length

scales of the velocity and pressure fields are significantly larger than those of the scalar fields in the

primary reaction zone, and it is the accuracy in resolving the scalar length scales, that ultimately

determines the requisite finest mesh-resolution in an AMR construction. Accordingly, the mesh

resolution required for accurate solution of the momentum equations is much coarser than that

necessary for comparable accuracy in the solution of the scalars. The relatively coarse mesh resolu-

tion requirement, and the low computational cost per mesh cell, means that solving the momentum

equations on a uniform mesh is not expected to significantly increase overall computational cost.

Further, this construction is, in fact, expected to have superior efficiency, since the elliptic solver

required for the pressure equation is more efficient on a uniform mesh compared to a multilevel

one [7, 11, 12]. This construction retains the overall low computational cost of the momentum

solution relative to the cost of time integration of the scalar fields. It is designed to be optimal

for reacting flows, targeting momentum/scalar elements of the solution with suitably chosen mesh

structures. It is a multihierarchy construction where the momentum equations are handled on a
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uniform mesh –of adequate resolution– and are coupled to the adaptive mesh solution of the species

and energy equations. The uniform mesh is chosen to be sufficiently resolved for the velocity and

pressure fields. Note that such constructions have been used in other contexts where necessary, for

example the methods developed in numerical relativity for simulating relativistic, self-gravitating

fluids [13, 14].

In summary, the mesh on which the momentum equations are solved and the lowest level of

the mesh hierarchy resolving the scalar equations are identical. The numerical methods used to

discretize them are also the same. The time-stepping scheme for the momentum and scalar equations

employs an operator-split construction. The velocities are interpolated up from the lowest SAMR

level, when required for convecting the scalars on finer SAMR levels, using interpolations that have

been previously verified [10]. The main contributions of the paper, then, are:

1. The construction of a projection scheme, especially a formulation for the pressure that is

consistent, stable and preserves fourth-order accuracy. This is demonstrated empirically over

a set of 1D and 2D test cases.

2. The implementation of this projection scheme in a coupled high order low Mach number react-

ing flow construction, with a SAMR discretization for species mass fractions and temperature

fields, that preserves overall fourth-order accuracy. Convergence tests, using errors calculated

vis-à-vis both analytical and spatially refined solutions are employed for this purpose.

We note that this construction does not employ interpolation stencils to explicitly ensure con-

servation of fluxes at coarse-fine boundaries (see [15] for the stencils for a fourth-order Poisson

equation solver on SAMR meshes). While conservation is a desired property, its manifestation in

resolved high-order computations is primarily as a component of the truncation error budget. A

fully resolved velocity field on the coarsest mesh level, coupled with sixth-order interpolations at

coarse-fine boundaries should be sufficient for preserving conservation of fluxes up to discretization

order. We check this empirically by performing an advective-diffusive test of a scalar “blob”, mak-

ing it travel across a number of coarse-fine interfaces. The numerical solution is compared against

an analytical one to assess the effect of approximate preservation of flux continuities. This may be

considered to be a reacting-flow analog of the acoustic pulse test performed in [16] for much the

same purpose. Later, we re-examine the same problem in a more stringent context, by subjecting
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a premixed flame to a large, vortically-induced stretch and investigating its effect on the spatial

distribution of radicals.

2. Literature Review

SAMR was pioneered by Berger and Colella in their 1989 paper on the simulation of shock

waves [3]. Thereafter, it has been used in the simulation of flames with complex chemistry [17] in a

variety of realistic 3D laboratory configurations [18, 19]. The numerical schemes employed in these

investigations were of second-order accuracy, except in the case of shock-wave simulations, where

the use of limiters reduce the accuracy to first-order in the vicinity of the discontinuities. In fact,

literature on the construction of high-order (i.e., greater than second-order) accuracy on SAMR

grids is very sparse.

Barad and Colella [15] addressed the problem of solving the Poisson equation on 2D and 3D

SAMR meshes. Starting with a classical Mehrstellen method, they developed a fourth-order con-

struction. Tests were done on a 2-level mesh (i.e., a coarse mesh with a single level of refinement)

and fourth-order convergence of the numerical discretization error was demonstrated. The main

contribution of this method lies in the treatment of the interpolations at the interface between

coarse and fine level patches. A sequence of one-dimensional interpolations, some fourth-order and

others sixth-order, were required to obtain the desired order properties. The sequence of inter-

polations is dependent on the configuration of patches. The refinement ratio between parent and

children patches is required to be four. Recently, Colella and coworkers have investigated develop-

ing fourth-order SAMR methods for flows with shock waves. In such flows, the use of limiters at

the discontinuity usually renders the scheme first-order, and consequently schemes employing them

were designed to preserve only second-order accuracy in the smooth portions of the flow. In [20],

Colella and Sekora developed a limiter that preserves accuracy at smooth extrema, allowing a ra-

tionale for developing higher-order finite-volume schemes for SAMR. Preliminary results on SAMR

meshes are in [21]. The determination of data in the “halo” surrounding fine patches is done by

solving a constrained least-squares problem (the constraints are the conservation laws). Results are

presented for both Cartesian and mapped SAMR grids.

Huang et al. [16, 22] used fourth-order dispersion-relation preserving schemes on SAMR meshes

to solve a coupled set of three linear equations to investigate acoustic radiation from an aero-engine
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intake. In their case, the “halo” of grid cells around a fine patch was filled (using data from

the underlying coarse parent patch) using symmetric fourth-order interpolations. Tests showed

that a Gaussian pulse propagating across a coarse-fine interface showed far smaller oscillations

when fourth-order interpolants were used. The oscillations could be removed using either filters

or artificial viscosity, and separate tests were done to demonstrate this. Preference for artificial

viscosity was indicated since it can be user-controlled. Tests were limited to 2D and three-level

SAMR meshes were used. The construction was tested on both Cartesian SAMR meshes as well as

after mapping the grid to be body-fitted i.e., to be fitted to the engine inlet.

A multihierarchy construction was employed in the simulation of relativistic, gravity-driven

flows [13, 14]. These interactions are modeled by coupling Einstein’s (elliptic) field equations with

relativistic hyperbolic Euler equations for inviscid flow. The fields evolved using Einstein’s equa-

tions are smooth and show large structures only. The gravitational/tidal effects on matter lead

to relativistic fluid dynamical phenomena, including shocks. In [13] the authors couple a spectral

method for Einstein’s fields with a Godunov solver for the Euler equations. Second-order accuracy

was empirically observed, with adequate filtering to remove oscillations associated with polynomial

interpolations between the two solvers. In [14] a pseudospectral formulation was adopted, primar-

ily to simplify the interpolation between the field and hydrodynamical meshes, and second-order

convergence was also observed. The interpolation order was generally third-order. In both cases,

the size of the hydrodynamical and field grids (in each direction) was within a factor of 2 of each

other; however, given the difference in their extent (factor of 20) their spatial resolutions were vastly

different.

This paper builds on our previous efforts to develop tools for high-order SAMR computations.

In [9] we adapted RKC for use on SAMR meshes and verified that its order properties were preserved

by testing it with a reaction-diffusion system; in [23] we investigated its behavior when advection was

added to the system. In [10] we derived expressions for fourth (and higher) order finite-difference

stencils, both symmetric and skewed, for evaluating derivatives as well as for interpolations. We

then investigated how derivatives and interpolation stencils needed to be paired in order to obtain a

desired order of convergence in the spatial discretization error. This was performed empirically, using

a set of model equations. The models were chosen so that the maximum spatial derivatives in the

equation were different. Tests showed that the pairing required to obtain an accuracy commensurate
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with the derivative stencil required an interpolation stencil whose order was higher than that of the

derivative stencil; further, this excess was related to the highest spatial derivative in the equation.

An expression relating the three was obtained. Tests also revealed that the use of high-order methods

with SAMR could lead to Gibbs phenomena at the interface between coarse and fine patches, but

which could be removed by filtering. The correct pairing of derivative stencil and filter orders

(which would not degrade the order properties of the error convergence under mesh refinement) was

obtained via a expression relating the two. All tests were performed with nodal variables.

With this introduction and extensive background, we proceed in the following to the description

of the numerical construction.

3. Numerical Methodology

In the low-Mach number limit, the continuity, momentum and scalar equations are written in

compact form as

∇ · v = −
1

ρ

Dρ

Dt
(1a)

∂v

∂t
= −

1

ρ
∇p + CU + DU (1b)

∂T

∂t
= CT + DT + ST (1c)

∂Yk

∂t
= CYk

+ DYk
+ SYk

k = 1, 2, . . . , Ns (1d)

Here v is the velocity vector, ρ the density, T the temperature, Yk the mass fraction of species k,

p is the hydrodynamic pressure, and Ns is the number of chemical specie. The D
Dt

operator in the

continuity equation represents the material derivative, D
Dt

= ∂
∂t

+ v · ∇. The system of governing

equations is closed with the equation of state for an ideal gas:

P0 =
ρℜT

W
= ρℜT

Ns∑

k=1

Yk

Wk

= const (2)

where P0 is the thermodynamic pressure, ℜ is the universal gas constant, Wk is the molecular

weight of species k, and W is the molecular weight of the mixture. The thermodynamic pressure

is spatially uniform in the low-Mach number limit. Further, restricting our focus to flows in open
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domains, P0 is constant.

The convection and diffusion terms in (1) are given by

CU = − (v · ∇)v, DU =
1

ρ
∇ · τ, (3a)

CT = − (v · ∇) T, DT =
1

ρcp

∇ · (λ∇T ) −
1

cp

(
Ns∑

k=1

cp,kYkVk

)
· ∇T (3b)

CYk
= − (v · ∇) Yk, DYk

= −
1

ρ
∇ (ρYkVk) (3c)

and the source terms by

ST = −
1

ρcp

Ns∑

k=1

hkω̇k, SYk
=

ω̇k

ρ
(4)

Here, τ is the stress tensor given by τij = µ
(

∂ui

∂xj
+

∂uj

∂xi
− 2

3
δij∇ · v

)
, µ is the dynamic viscosity, and

λ is the mixture thermal conductivity. Further,

Vk = −
Dk,m

Yk

(
∇Yk +

Yk

W
∇W

)
,

is the diffusion velocity of species k, where Dk,m is the mixture-averaged diffusivity of species

k. Finally, cp and cp,k are the specific heats at constant pressure for the mixture and species k,

respectively, and hk and ω̇k are the specific enthalpy and molar production rate, respectively, of

species k.

NASA polynomials [24] are used to compute thermodynamic properties. The mixture-averaged

transport properties are evaluated using a dipole-reduced formalism [25]. The Soret and Dufour

effects are negligible for hydrocarbon combustion and are not included in the transport model.

In the numerical construction presented below, the equation of state (2) is used to derive an

expression for the right hand side of the continuity equation (1a)

DP0

Dt
= 0 →

1

ρ

Dρ

Dt
= −

1

T

DT

Dt
−

Ns∑

k=1

W

Wk

DYk

Dt
(5)

= −
1

T
(DT + ST ) −

Ns∑

k=1

W

Wk
(DYk

+ SYk
) (6)
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3.1. Numerical Approach

In this section we develop a numerical method to solve the low Mach number reacting flow

equations described above. The divergence constraint (eq. 1a) resulting from the low Mach number

limit leads to a differential algebraic equation system, for which we adopt a projection method to

solve for the velocity and pressure fields. The momentum solver is coupled with a solver for the

species and temperature fields, arriving at an overall construction that is fourth-order in space,

second-order in time.

As described in Section 1, the problem is solved on a mesh hierarchy. On a given patch, variables

are defined at cell centers and edge-centers. A detail of a 2D computational grid is shown in Fig. 1.

The computational domain is composed of “cells” and “edges”. The temperature, density, pressure,

and species mass fractions are located at cell centers, shown with filled circles, while the velocity

components are located at edge centers. The cell-centers correspond to integer indices, i.e. (i, j),

(i + 1, j), while the edges correspond to fractional indices, i.e. (i− 1
2
, j), (i + 1

2
, j) for the x-velocity

and (i, j − 1
2
), (i, j + 1

2
) for y-velocity. Figure 2 shows the cell and edge correspondence between

overlaping grids on two consecutive mesh levels.

The numerical integration of the system of equations is performed in three stages. First, a

projection approach is adopted to advance the velocity field based on the equations (1a-1b). The

projection scheme is implemented on a uniform mesh. In the second stage, the scalars are advanced

using an operator split approach that separates the convection and diffusion contributions from

the ones due to the chemical source terms. We implement a symmetric Strang splitting scheme

beginning with the source term contribution for half the time step, followed by the contributions

from convection and diffusion terms for a full time step, and concluded by the remaining contribution

from the reaction term for half the time step. During this stage, scalars are recursively advanced

on succesively refined grids necessary to resolve the scalar spatial structures. The time stepping is

concluded with the third stage, which repeats the projection algorithm on a uniform mesh using

information on scalar fields obtained at the end of the second step. The algorithm is described in

detail below.

Stage 1a

The 2ndorder Adams-Bashforth scheme is used to advance the velocity field using momentum and
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diffusion terms only

v̂n+1 − vn

∆t
=

(
1 +

1

2

∆t

∆to

)
(Cn

U + Dn
U) −

1

2

∆t

∆to

(
Cn−1

U + Dn−1
U

)
(7)

Superscripts n and n−1 refer to values at the current tn and previous tn−1 times, respectively. The

above expression takes into account changes in time step values, ∆t = tn+1−tn and ∆to = tn−tn−1.

The convection terms contain components that are either collocated or staggered. For the x-

velocity, CU |x = −u∂u
∂x
−v ∂u

∂y
, the first term is a product of collocated variables since a centered stencil

is used to obtain ∂u
∂x

at (i± 1
2
, j). For the second part, v is interpolated from edge centers (i, j ± 1

2
)

to edge centers (i ± 1
2
, j) corresponding to u-velocity and ∂u

∂y
is computed using collocated stencils.

Velocity derivatives are discretized using 4th order stencils. A 6th order accurate interpolation

stencil is used in order to preserve the overall 4th order accuracy of the scheme. The convection

terms for the other velocity components are computed in a similar fashion. The stencils for the

these discretizations are given elsewhere [10].

The evaluation of the viscous stress tensor components involves staggered stencils for velocity

derivatives and interpolants for the mixture viscosity. The diagonal terms τii are located at cell

centers, while the off-diagonal ones τij,i6=j are located at cell vertices, shown with open symbols in

Fig. 1. The mixture viscosity is first calculated based on species mass fractions and temperature

at cell-centers using a mixture-averaged formulation [25]. The viscosity needed for the off-diagonal

stress tensor terms is computed by interpolation from the cell center values, using a 6th order stencil.

The density at edge centers necessary to compute DU is also computed by interpolation from cell

center values. The stencils necessary for these interpolations can be found in [10], while the 4th order

staggered stencils for velocity derivatives are given in Appendix B.

Stage 1b

The provisional velocity field, v̂, does not satisfy eq. (1a). This equation is used in conjunction

with eq. (1b) to derive an equation for the hydrodynamic pressure field

∇ ·

(
1

ρn+1
∇p

)
=

1

∆t

(
∇ · v̂n+1 +

1

ρ

Dρ

Dt

∣∣∣∣
n+1
)

, (8)

that will be then used to correct the provisional velocity field. Since the scalar fields at tn+1 are not
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yet known, 1
ρ

Dρ
Dt

∣∣∣
n+1

is estimated by extrapolation:

1

ρ

Dρ

Dt

∣∣∣∣
n+1

=

(
1 +

∆t

∆to

)
1

ρ

Dρ

Dt

∣∣∣∣
n

−
∆t

∆to

1

ρ

Dρ

Dt

∣∣∣∣
n−1

(9)

The numerical evauluation of 1
ρ

Dρ
Dt

is described in Stage 3b. The density at tn+1, ρn+1, is also

extrapolated from values at tn and tn−1 similar to eq. (9). Finally, the fourth-order discretization

of the pressure equation (8) is described in Section (3.2).

Stage 1c

The gradient of the hydrodynamic pressure is used to correct the provisional velocity field v̂n+1 to

obtain the predicted velocity at n + 1

vn+1,p = v̂n+1 −
∆t

ρn+1
∇p, (10)

On the boundaries of the computational domain, the pressure gradient normal to the boundary is

set to zero in Stage 1b which results in vn+1,p|n = v̂n+1|n. Here subscript n denotes the velocity

component normal to the boundary. Superscript p was added to v to distinguish the predicted

velocity values obained at the end of Stage 1 from the corrected ones obtained at the end of Stage

3 below. The boundary conditions for the velocity and hydrodynamic pressure are detailed in

Section 3.4.

Stage 2a

In the first part of the second stage, temperature and species mass fractions are advanced over half

the time step based on contributions from the source terms, ST and SYk
.

T ∗ − T n =

∫

∆t/2

ST dt (11)

Y ∗
k − Y n

k =

∫

∆t/2

SYk
dt k = 1, 2, . . . , Ns

The CVODE stiff integrator package [26] is used to integrate eqs. (11). Since during this stage the

rhs in eq. (11) has no spatial dependence, the time advancement is done independently for each

computational grid cell. At the end of the stage, the scalar values are recursively restricted from

fine to coarse grid levels. Stencils for interpolations between coarse and fine grid levels are given in
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Appendix B.

Stage 2b

During the second part of the second stage, a 2nd-order, multi-stage, Runge-Kutta-Chebushev

(RKC) [8] scheme is used to advance scalars based on the contributions from convection and diffusion

terms:

T ∗∗ − T ∗ =

∫ tn+1

tn
CT + DT︸ ︷︷ ︸

FT

dt

Y ∗∗
k − Y ∗

k =

∫ tn+1

tn
CYk

+ DYk︸ ︷︷ ︸
FYk

dt k = 1, 2, . . . , Ns (12)

The numerical details for the multi-stage RKC scheme are given elsewhere [2, 8].

RKC is developed to accomodate large diffusive CFL number stability, which makes it suitable

for diffusion-dominated configurations which are of interest for this project. For these configurations

the imaginary parts of the eigenvalues due to the convection are small while the negative real

eigenvalues due to diffusion are much larger in magnitude. Alternate time discretization schemes

that accomodate larger advection terms can be employed, e.g. utilizing a second level of Strang

splitting for the convection terms and using a suitable associated RK scheme.

The stability limit for the time step ∆t depends quadratically on the number of RKC stages.

A detailed analysis of the range of values for the time step and number of RKC stages, typically

between 2 and 32, is provided in [2].

As scalars are advanced from tn to tn+1, velocity values needed to construct advection fluxes for

the intermediate RKC times are computed by interpolation based on the values at tn and vn+1,p at

tn+1 = tn + ∆t:

v(s) = (1 − cs)v
n + csv

n+1,p.

Here, cs = (ts−tn)/∆t is the time fraction corresponding to RKC stage s, 1 ≤ s ≤ M . As mentioned

above, the number of RKC stages M controls the stability regions of the scheme. Similar to some of

the velocity convection terms, scalar convection terms involve components that are not collocated.

For these terms the scalar derivatives are evaluated at the same location as the velocity components

using 4th order staggered derivative stencils. The products ui
∂Φi

∂xi
are then interpolated from edge

13



centers to cell centers. The interpolation stencils for these discretizations are derived in [10], while

the staggered derivatives are provided in Appendix B.

The diffusion terms DT and DYk
are computed using high-order derivatives and interpolations

as follows:

• Temperature and species mass fractions are interpolated from cell centers to edge centers, and

transport properties, e.g. diffusion coefficients, are evaluated at edge centers based on these

interpolated values.

• The temperature conduction term is evaluated using staggered derivative stencils for T and

then again for λ∇T .

• The diffusion velocity is computed at edge centers using staggered derivatives stencils.

• The components of the dot product in the second part of DT are computed at edge centers

and then interpolated to cell centers.

• The species diffusion term is computed similar to the thermal conduction term in the tem-

perature equation.

High-order interpolation stencils can be found in [10] while staggered derivative stencils are provided

in Appendix B. The above algorithm results in the computation of convective and diffusive terms

at cell centers. They are then used to advance the scalar values with the RKC algorithm.

Time advancement of the mesh hierarchy. SAMR is used to adaptively refine the compu-

tational grid in regions where the combustion is active and the internal flame structure needs to be

resolved accurately. Figure 3 shows a schematic of the time advancement procedure, first proposed

by Berger and Collela [3], on adjacent mesh levels, L and L + 1, in the grid. The scalars are first

advanced on the coarse level L using the RKC algorithm. After the advancement is completed on

L, the solution on this level is used to provide boundary conditions (via coarse-to-fine prolongation)

for the solution advancement on L + 1.

The values at various intermediate times between tn and tn +∆t are computed by interpolation

on level L and the results are interpolated to level L + 1. Ray et al. [10] showed that, in order to

preserve the overall order of accuracy, the interpolation order needs to account for the highest spatial
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derivative in the discretization. For our numerical construction this condition leads to 6th order

stencils for interpolating data between adjacent grid levels.

The grid size on the finer mesh level L + 1 is half compared to L and for stability purposes the

time step is halved. At the end of the two sub-steps on L + 1 the fine-grid solution is presumably

“better” and is interpolated to the coarse grid L. Boundary conditions for the scalar advance are

provided in Section 3.4.

Stage 2c

Stage 2c is a repeat of Stage 2a, using the “**” scalar values as initial conditions

T n+1 − T ∗∗ =

∫

∆t/2

ST dt

Y n+1
k − Y ∗∗

k =

∫

∆t/2

SYk
dt k = 1, 2, . . . , Ns (13)

At the end of this stage all scalars correspond to tn+1. The solution advancement during stages 2a

and 2c is based on the source terms which are independent of the solution at neighboring grid points.

Consequently no prolongations are required for these stages. However, after each of these stages are

completed, the solution needs to be restricted (fine-to-coarse grid interpolation) recursively starting

from the finest grid level in the main hierarchy.

Stage 3a

The provisional velocity field values at tn+1 are re-evaluated based on the scalar values obtained at

the end of Stage 2 and on the predicted velocity values at the end of Stage 1

v̂n+1 − vn

∆t
=

1

2

(
(Cn

U + Dn
U) +

(
Cn+1

U + Dn+1
U

))
(14)

The convection Cn+1
U and diffusion Dn+1

U are based on the velocity field vn+1,p and the scalar values

at tn+1.

Stage 3b

The hydrodynamic pressure field is re-computed using equation (8). The divergence term that

enters the rhs for this equation is constructed using the provisional velocity field obtained in Stage

3a, while eq. (6) is used to compute 1
ρ

Dρ
Dt

∣∣∣
n+1

based on scalar values at tn+1, obtained in Stage 2.

The discretization of the diffusion terms in eq. (6) is similar to the discretization of the diffusion
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terms described above in Stage 2b.

Stage 3c

This stage is similar to Stage 1c. The gradient of the hydrodynamic pressure obtained at Stage 3b

is used to correct v̂n+1 (computed at Stage 3a) to obtain vn+1.

3.2. Discretization of the Pressure Equation

We present in Appendix A a fourth-order finite difference discretization for the variable co-

efficient Poisson equation (8). We show that additional manipulations of the linear system for

the pressure solve, and consequently the boundary conditions for the provisional velocity field, are

required in order to obtain consistent linear systems.

In this section we present a formulation for the pressure solve based on cell- and edge-averaged

values of flow variables. This formulation retains a high-order convergence rate while simplifying

the consistency condition for the linear system. This methodology is similar to Kadioglu et al [27]

and relies on the fact that the cell-averaged divergence of a vector field is identically equal to

the difference between its edge-averaged values. A schematic of the locations of the cell- and

edge-centered variables and their cell-and edge-averaged counterparts is shown in Fig. 4. In the

expressions below, a horizontal bar is used for cell-averaged values while tilde is used for edge

averages.

The cell average of the velocity divergence in the rhs of (8) is given by

∇ · vi,j =
ũi+1/2,j − ũi−1/2,j

hx
+

ṽi,j+1/2 − ṽi,j−1/2

hy
(15)

Fourth-order Lagrange polynomial interpolants are fitted through the edge-centered velocities and

then used to compute the edge-averaged velocity. For edge (i + 1
2
, j), the averaged normal velocity

is computed as

ũi+ 1

2
,j =

−17ui+ 1

2
,j−2 + 308ui+ 1

2
,j−1 + 5178ui+ 1

2
,j + 308ui+ 1

2
,j+1 − 17ui+ 1

2
,j+2

5760
(16)

The expressions for the v-velocities are similar, except that summation takes place in the i-direction.

The cell-averaged value for 1
ρ

Dρ
Dt

in the rhs of eq. (8) is computed by applying the 4-th order

expression (16) to the cell-centered values, succesively in the i and j-directions, respectively.
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For simplicity of notation 1
ρ

is replaced by “a” in the left-hand-side (lhs) of the pressure equation.

The cell-averaged divergence ∇ · (a∇p) is discretized based on (yet unknown) edge-averaged (̃a∇p):

∇ · (a∇p)i,j =
ãpxi+ 1

2
,j − ãpxi− 1

2
,j

hx
+

ãpyi,j+ 1

2

− ãpyi,j− 1

2

hy
(17)

where px and py are the x- and y-components of the pressure gradient. The edge-averaged products

(̃apx) and (̃apy) are computed as follows. First the cell-averaged ā is computed from cell-centered

values similar to the cell-averaged 1
ρ

Dρ
Dt

. The edge-averaged values for the inverse-density and pres-

sure gradients fields on edge (i + 1
2
, j) are then computed as

ãi+ 1

2
,j =

−āi−1,j + 7āi,j + 7āi+1,j − āi+2,j

12
(18)

p̃xi+ 1

2
,j =

p̄i−1,j − 15p̄i,j + 15p̄i+1,j − p̄i+2,j

12hx

In general, the edge-averaged product (̃apx) is not equal to the product of edge-averages ã and p̃x.

To determine a high-order expression for this product in terms of these edge-averages, power series

expressions are developed to match the ã and p̃x on edges (i+ 1
2
, j), (i+ 1

2
, j ± 1), and (i+ 1

2
, j ± 2).

A fourth-order expansion is written as:

f(y) =

4∑

n=0

c(n) (y − yj)
n + o

(
h4

y

)
(19)

where yj is the y-coordinate of the center of edge
(
i + 1

2
, j
)
. The coefficients c(0), c(1), . . . are deter-

mined by matching the averaged power series expansions over the cell edge centered around yj with

edge-averaged values of the field approximated by this expansion. The first two coefficients in the

above expansion corresponding to a are given by

c(0)
a =

9ãi+ 1

2
,j−2 − 116ãi+ 1

2
,j−1 + 2134ãi+ 1

2
,j − 116ãi+ 1

2
,j+1 + 9ãi+ 1

2
,j+2

1920
(20)

c(1)
a =

5ãi+ 1

2
,j−2 − 34ãi+ 1

2
,j−1 + 34ãi+ 1

2
,j+1 − 5ãi+ 1

2
,j+2

48hy
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The average product (̃apx) over cell edge
(
i + 1

2
, j
)

is then computed as

(̃apx)i+ 1

2
,j =

1

hy

∫ yj+1/2

yj−1/2

fafpxdy = c(0)
a c(0)

px
+
(
c(0)
a c(2)

px
+ c(2)

a c(0)
px

+ c(1)
a c(1)

px

) h2
y

12
+ o(h4

y) (21)

where subscripts a and px were introduced to distinguish between the power series coefficients

for a and apx, respectively. Making use of the power series above, the product of edge-averages

ãi+ 1

2
,j · p̃xi+ 1

2
,j can be written as

ãi+ 1

2
,j · p̃xi+ 1

2
,j = c(0)

a c(0)
px

+
(
c(0)
a c(2)

px
+ c(2)

a c(0)
px

) h2
y

12
+ o(h4

y)

This expression is substitutted into the result for the average product (21) leading to

(̃apx)i+ 1

2
,j = ãi+ 1

2
,j · p̃xi+ 1

2
,j + c(1)

a c(1)
px

h2
y

12
+ o(h4

y) (22)

Thus the (̃apx)i+ 1

2
,j depends on ā and p̄ in the rectangle of cells (i−1, j−2) → (i+2, j +2). Similar

expressions can be derived for (̃apx)i− 1

2
,j as well as for the y-components (̃apy)i± 1

2
,j. This results in

a 25-point stencil that uses the (i − 2, j − 2) → (i + 2, j + 2) square around cell (i, j).

This matrix constructed with the above stencils is completed with boundary conditions for ā and

p̄. For the density field, either Neumann or extrapolation boundary conditions are used depending

on the specific physical domain configuration. For pressure, Neumann conditions are used for all

cells on the computational domain boundaries, except the cell in the top right corner where pressure

is fixed to zero.

The hypre package [28] is used to solved the linear system resulting from the above fourth-

order discretization. The solution is based on a conjugate gradient method preconditioned with

a 2nd order structured multigrid method to improve the convergence rate of the iterative method.

About two iterations are necessary to reduce the residual of the linear system by one order of

magnitude. The tolerance threshhold for the residual is typically set to 10−14–10−17 to limit the

propagation of convergence errors. The number of iterations necessary to achieve convergence is

nearly independent of the problem size.

18



3.3. Computation of Pressure Gradient Correction

The cell-averaged pressure values computed by solving the above linear system are then used to

compute the correction to be added to the provisional velocity field v̂. This is done in two steps:

1. The edge-averaged 1̃
ρ
∇p is computed using eqns. (18) and (22).

2. The edge-centered 1
ρ
∇p can be computed using either explicit or implicit algorithms. The

explicit algorithm relies on the power series expansion (19). The first coefficient in this

expansion (20) corresponds to the edge center value. The x-direction correction for ui+ 1

2
,j can

be written as follows, using ξ ≡ px/ρ for notational compactness:

ξi+ 1

2
,j =

9ξ̃j−2 − 116ξ̃j−1 + 2134ξ̃j − 116ξ̃j+1 + 9ξ̃j+2

1920
(23)

The expression for the y-direction corrections are similar, except i ↔ j.

The implicit algorithm relies on eq. (16) used to construct cell/edge-averages. The edge-

average
(̃

px

ρ

)
can be written, again using the above ξ, as:

−17ξi+ 1

2
,j−2 + 308ξi+ 1

2
,j−1 + 5178ξi+ 1

2
,j + 308ξi+ 1

2
,j+1 − 17ξi+ 1

2
,j+2

5760
= ξ̃i+ 1

2
,j (24)

This results in a pentadiagonal system for each
(
i + 1

2

)
line in the y-direction to determine

the corrections that need to be applied to the intermediate x-component of the velocity field.

Similar linear systems are created for each
(
j + 1

2

)
line to compute the corrections for the

y-component of the velocity field.

Numerical tests for the computation of the pressure gradient correction show negligible differ-

ences between the values obtained with the explicit and implicit algorithms described above. In the

numerical simulations we will use the explicit algorithm as it involves less operations and is simpler

to implement in parallel than the implicit approach.

3.4. Boundary conditions

We discuss here the treatment of boundary conditions for the velocity and hydrodynamic pres-

sure in Stages 1 and 3, and for temperature and species mass fractions in Stage 2.

Velocity and Hydrodynamic Pressure
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Standard Dirichlet boundary conditions are imposed for the velocity components normal to

inflow and symmetric boundaries. For components tangential to these types of boundaries, slip

boundary conditions are applied through appropriate stencils used to compute the corresponding

convective and diffusion fluxes.

A “convective” boundary condition is used for the velocity components normal to the outflow

boundaries.
∂ (v · n)b

∂t
+ U0

∂ (v · n)b

∂n
= 0 (25)

Here, subscript b refers to the boundary values, n is the unit vector normal to the boundary

pointing outside the computational domain and ∂/∂n is the partial derivative normal to the bound-

ary. Outflow boundary conditions are commonly used in incompressible or low-Mach number flow

computations to ensure that numerical errors near outflow boundaries are convected out of the

computational domain.

The “convective” velocity U0 is computed using a global mass conservation constraint obtained

by integrating the continuity eq. (1a) over the computational domain.

∫

V

(
∇ · v +

1

ρ

Dρ

Dt

)
dv = 0 → U0 = ±

1

Aout

(∫

Ain

(v · n)dσ +

∫

V

1

ρ

Dρ

Dt
dv

)
(26)

Here Ain and Aout are the areas of the inflow and outflow boundaries and the sign of the velocity

depends on the direction of the unit normal n. For Stage 1a, U0 is computed using 1
ρ

Dρ
Dt

∣∣∣
n+1

extrapolated with eq. (9), while for Stage 3a this term is computed using scalar values obtained in

Stage 2.

The boundary conditions for the provisional velocity field are set similar to Kim and Moin [29]

and the pressure equation discretization is adjusted accordingly on the boundaries of the computa-

tional domain. The pressure solve also requires global mass conservation to be satisfied to machine

precision. In order to ensure this, eq. (1a) is again integrated over the computational domain after

the boundary conditions are applied at the end of Stages 1a and 3a

∫

V

(
∇ · v +

1

ρ

Dρ

Dt

)
dv = ±ǫAout (27)

An average velocity correction ǫ is then added to the velocity components normal to the outflow
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boundaries in order to ensure global mass conservation.

Temperature and Species Mass Fractions

For Stage 2b, Dirichlet conditions are used for the scalar fields at the inflow boundaries. The

Neumann conditions corresponding to symmetry boundary conditions are imposed through appro-

priate stencils in the calculation of convective and diffusion fluxes in eq. (1c-1d). A “convective”

transport equation is used for scalars at outflow boundaries, similar to eq. (25) for the velocity field.

4. Results

As we developed the numerical construction presented in the previous section we used the method

of manufactured solutions [30] to verify the implementation of various algorithm components. In

this section we present results for one-dimensional (1D) and two-dimensional (2D) configurations

that are used to test the stability and convergence rates for the full algorithm. First, the numerical

stability and convergence rates are studied for a configuration that involves the advection-diffusion

of a passive scalar. The passive scalar tests are used to extend the results established in [10] (for the

correct pairings of the orders of interpolation and derivative stencils for nodal variables) to situations

which involve a combination of cell-centered scalar variables and velocities on a staggered mesh. The

tests also examine the efficiency of an RKC integrator for time advancement of discretized systems

that include both convection and diffusion terms. Subsequently, we present numerical studies for

full low Mach number reacting flow. Due to the computational expense of the reacting flow tests,

time convergence rates are measured only in 1D configurations, while spatial convergence rates are

measured both in 1D and 2D configurations. All reacting flow tests involve methane combustion,

and chemistry is modeled using a C1 skeletal mechanisms with 16 species and 46 reversible reactions

[31]. Transport properties are computed using a mixture-averaged formulation [25].

4.1. Convergence Tests Using an Advection-Diffusion System

For the simulations presented in this section, the velocity field is fixed and there is no scalar

source term, therefore only Stage 2b of the numerical algorithm is active. This series of tests involves

the advection-diffusion of both a “plus”-like shape and a Gaussian pulse [32]. The first configuration

is used to illustrate the lack of distortion in the convective transport of strong scalar gradients at off-

axis directions through coarse-fine mesh boundaries, for sufficiently small convective CFL numbers.
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The second configuration is used to illustrate the temporal and spatial convergence rates of the

numerical construction.

A unit square [0, 1] × [0, 1] computational domain is considered and the advection corresponds

to a solid body rotation around its center, u = −ω
(
y − 1

2

)
, v = ω

(
x − 1

2

)
. Since velocity is fixed

and there are no reactions, for this series of test only Stage 2b of the numerical algorithm is active.

In the first configuration the initial conditions are constructed as follows. First the lengths of

the horizontal and vertical arms of the “plus” shape are set equal to 0.2 and their thicknesses to

0.05. These arms intersect symmetrically at (x = 0.75, y = 0.5). The scalar field is then defined as

φplus,IC(x, y, t) =
1 + tanh(αG(x, y))

2
(28)

where G(x, y) is the distance from point (x, y) to the closest point on the shape edge, positive inside

the shape and negative outside it. Parameter α controls the slope of the scalar profile near the edges

of the initial shape, and for these tests is set to α = 100.

The initial and boundary conditions for the Gaussian pulse are computed according to the

analytical solution

φa(x, y, t) =
δ2

δ2 + 4νt
exp

(
−

(x̄ − x0)
2 + (ȳ − y0)

2

δ2 + 4νt

)
(29)

where x̄(t) =
(
x − 1

2

)
cos(ωt) +

(
y − 1

2

)
sin(ωt), ȳ(t) = −

(
x − 1

2

)
sin(ωt) +

(
y − 1

2

)
cos(ωt). The

Gaussian pulse is initially located at x0 = 0.75, y0 = 0.5 and it’s initial diameter is set to δ = 0.045.

Several values are considered for the diffusion coefficient ν and for the grid and time step sizes to

determine the behavior of high-order stencils for prolongation and restriction and the convergence

rates of the numerical construction. Figure 5 shows sample results for SAMR simulations using

2 mesh levels with 256 × 256 cells on the coarse grid. The finer mesh patches are stationary and

placed such that scalar gradients cross the coarse-fine interfaces several times during each simulation.

The results in the left frame are based on a diffusion coefficient ν = 10−4. The the three shapes

correspond to the initial conditions, and after 3/8 and 5/8 time fractions of a full rotation period

t = 2π
ω

, respectively. The sample results in the right frame of Fig. 5 are obtained with a diffusion

coefficient ν = 10−3. The snapshot corresponds to a 5/8 time fraction of a full rotation period

t = 2π/ω. Comparison of contour levels on the coarse and fine mesh levels show no significant
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distortion of the Gaussian pulse as it passes through them. A comparison with the analytical

solution below provides a more rigorous check.

Figure 6 shows scalar contours for two simulations using the same grid size, 2562 grid points,

time step, ∆t = 10−4, and diffusion coefficient ν = 10−3. The diffusion CFL number, ν∆t/h2
x, which

characterizes the discretization of the diffusion term, is the same for both simulations, 0.01. Here

hx = hy = 1/256. The convection CFL number u∆t/hx which is characteristic of the advection

term discretization is 0.025 and 0.25, respectively. The solution for the latter, convection dominated

flow, in the right frame, shows “wavy” contours indicating lack of stability of the time integration

scheme at this convective CFL number. The solution in the left frame, where advection is much

smaller, shows a “plus” shape free of instabilities.

Figure 7 shows results aimed at testing the behavior of the high-order spatial discretizations

as the scalar gradients pass through coarse fine grid interfaces. In the left frame the coarse grid

resolution leads to approximately 2-3 grid points inside the steep scalar gradient. This resolution

is evidently not enough to resolve the spatial structure of the scalar field and the results obtained

on a uniform mesh exhibit differences compared to the SAMR results. In the right frame, there are

about 9 grid points in the regions where scalar values exhibit a large jump. For these tests there is

good agreement between uniform and SAMR results.

The L2 errors for several test simulations are shown in Fig. 8. These errors measure the difference

between the numerical and analytical solutions:

L2 =

√∑
i,j (φi,j − φi,j,a)

2

Np
(30)

where φi,j and φi,j,a are the numerical and analytical solutions, respectively, at grid cell (i, j), and

the errors are summed over all Np grid cells. The analytical solution is given in eq. (29). In order to

determine the convergence rates for the numerical integration, one needs to ensure that errors due

to the spatial and temporal discretizations do not contaminate each other. The left frame shows L2

errors measured after one full rotation for simulations using 10242 grid cells and time step values

∆t = 2.5× 10−5 . . . 2 × 10−4. The L2 error slopes for ∆t > 5 × 10−5 agree well with the theoretical

2ndorder convergence rate of the RKC scheme. There is a slight degradation in the convergence

rate for the simulation using ν = 10−3 and ∆t = 2.5× 10−5. For this simulation, the diffusion CFL
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number is 0.025, which is small enough to allow contamination of the time discretization errors by

spatial discretization errors, for sufficiently small ∆t.

The right frame shows convergence results for simulations using ∆t = 2.5 × 10−5 and grid sizes

N = 64 . . . 512. Here N is the number of grid points in each computational direction. For these

simulations the diffusion CFL number is 0.05 or less, which ensures that time discretization errors

are small compared to spatial errors. The L2 errors exhibit 4th-order convergence rates both for

uniform mesh simulations (solid lines and circles) and SAMR simulations using two mesh levels

(dashed lines and squares).

4.2. Temporal Convergence Tests Using Flame Simulations

For temporal convergence tests, the initial condition corresponds to a freely propagating pre-

mixed flame, computed with Chemkin’s Premix package [33]. The computational domain is 1.5 cm

long, and the premixed flame propagates from right to left into an unburnt stoichiometric mixture

of methane (CH4) and air. The initial solutions from the Chemkin package were relaxed on succes-

sively refined grids to ensure consistent initial conditions for the convergence tests. Both uniform

and SAMR computational grids were used to determine the convergence rates of the numerical

scheme. In the SAMR tests, three mesh levels were employed.

Figure 9 shows sample major species and radicals mass fractions profiles corresponding to the

initial conditions for the multi-level convergence test. For the major species (left frame) the coarse

grid solution is sufficient to capture their mass fraction profile through the flame. For some of the

radicals however, e.g. HCO, the computational grid needed refinement in order to capture mass

fraction profiles.

Time-dependent SAMR 1D flame computations were verified against corresponding 1D flame

solutions using Chemkin Premix [33]. The resulting profiles of flame species in Fig 9 evolve in a

self-similar manner in time as expected (not shown), and fall on top of the Chemkin initial condition

solution when shifted back in time.

We focus in the following on self-convergence studies with the present SAMR construction.

Tables 1 and 2 show select results for time convergence tests using a uniform mesh and a 3-level mesh,

respectively. Since for these simulations there is no analytical solution, the errors are computed

by comparing the solutions obtained with successively refined time steps. For the tests using a
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uniform mesh, M = 16 RKC stages were required to have stable simulations with the largest time

step ∆t = 5× 10−7 s. For the multi-level mesh, M = 8 RKC stages were sufficient to ensure stable

simulations since the grid size on the coarse mesh level was 4 times larger compared to the uniform

mesh simulation. Simulations were advanced in time for 0.4 ms. During this interval the flame

advanced about 0.2 mm, or about half its width, into the fresh mixture. These tests show 2ndorder

temporal convergence for all variables.

4.3. Spatial Convergence Tests Using Flame Simulations

In this section we investigate the performance of our construction focusing on spatial accuracy

and robustness. Primarily, we seek to illustrate that the full coupled construction has 4thorder

accuracy. Secondly, we investigate whether the rules for pairing interpolation and derivative stencils,

derived for nodal variables in [10], hold for a mixture of edge- and cell-centered variables. In this

respect, 2D simulations, which involve a large number of interpolations of velocities and scalar

variables away from their collocation points, pose a stringent test of their accuracy and stability.

4.3.1. 1D Freely Propagating Premixed Flame

The spatial convergence rates were first computed using the same configuration as for the time

convergence tests shown in Section 4.2. For this series of tests, the Chemkin solution is first relaxed

on the mesh with the finest grid size. The initial conditions for the coarser computational grids are

then obtained by interpolation using 6thorder stencil derived in Appendix B.

Figure 10 shows convergence rates obtained from simulations using 3 mesh levels, coarse grid

sizes from 7.5µm to 30µm, and a time step 10−8 s. Similar to the time convergence tests, the spatial

errors were assessed by comparing the solutions on successively smaller grid sizes. The L2 errors in

Fig. 10 exhibit a 4th-order decay with the grid size.

4.3.2. 2D Vortex Pair - Flame Interaction

A canonical vortex-flame configuration [2] was chosen to explore the performance of the numeri-

cal construction. Figure 11 shows a schematic of the computational domain, which is (1.5×0.75) cm

in the streamwise and transverse directions, respectively. The velocity field corresponding to a pe-

riodic row of counter-rotating Lamb-Oseen vortices is superimposed over the premixed 1D flame

solution discussed above. The methodology is described below.
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The azimuthal velocities induced by the positive and negative components of the vortex pair

are computed as

Vθ,±(x, y) = ±
Γ0

2πr±

(
1 − exp

(
−

r2
±

4νt0

))
(31)

where r+ and r− are the distances from a given point (x, y) to the centers of the positive (x+, y+)

and negative (x−, y−) vortices, respectively. The vortices are placed symmetrically with respect to

the streamwise centerline:

x± =
W

2
± xvp; y± = yvp (32)

where W = 0.75 cm is the width of the computational domain. The u and v components of the

velocity field are then computed as

u(x, y) = −(Vθ,+(x, y)
y − y+

r+

+ Vθ,−(x, y)
y − y−

r−
)

v(x, y) = Vθ,+(x, y)
x − x+

r+

+ Vθ,−(x, y)
x − x−

r−
(33)

In order to simulate the effect of periodic vortex pairs, contributions from virtual pairs to the

left and right of the computational domain need to be added to the velocity field. Their effect

decreases exponentially with the distance and we found that 16 pairs on each side of the domain

are sufficient to generate accurate initial conditions for the velocity field. The parameters for the

Lamb-Oseen vortices are as follows: Γ0 = 0.04 m2/s, ν = 1.568 × 10−5 m2/s, t0 = 5 × 10−3 s, and

(xvp, yvp) = (0.05, 0.6) cm.

Throughout the simulation, the velocity at the inflow boundary is kept constant, while the

velocity at the outflow boundary is determined based on mass conservation constraints. Symmetry

boundary conditions are imposed on the lateral boundaries.

Numerical simulations were performed using both uniform and SAMR grids with 2 and 3 mesh

levels. Three coarse grid sizes were considered, hx = 15µm . . . 60µm, to determine spatial conver-

gence rates. A time step ∆t = 2× 10−8 s was adopted for all simulations. This time step leads to a

convection CFL number of about 0.05 and a diffusion CFL number based on H2 diffusivity of about

0.3. This time step ensures that the stability region of the RKC scheme can handle convection and

diffusion terms simultaneously, as observed in Section 4.1.

Figure 12 shows freeze frames of the vorticity field and flame heat release rate. The vortex
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pair is initially located 2 mm upstream of the flame and propagates with a speed of approximately

8 m/s towards it. As the vortex pair impinges into the flame, the flame structure is modified by

the interaction with the strain rate field induced by the vortex pair and, at later times, the flame is

quenched on the centerline (results not shown) by the vortex pair. Flame structure and dynamics

during the interaction with the vortex pair are consistent with results in earlier low-Mach number

reacting flow studies focusing on flame-vortex interactions [34].

Figure 13 shows the x-velocity, vorticity, and heat release rate (HRR) profiles along centerline

and a slanted cut through the flame. The circles correspond to a uniform mesh simulation with

hx = 15µm while the square symbols correspond to a 2 level SAMR simulation with hx = 30µm

on the coarse level. The velocity and vorticity profiles for the SAMR simulation correspond to the

coarse level, while the heat release rate profile for the SAMR correspond to the fine level. The

velocity field is captured well by the SAMR simulation on the coarse grid compared to the uniform

grid simulation. The HRR results are also in very good agreement.

Figure 14 shows details of the velocity field and HCO mass fraction profiles in the flame region.

These results show that the inner flame structure is much thinner than the velocity field length

scales in the flame region and elsewhere in the vortex pair region. The good agreement between the

uniform mesh and SAMR simulations indicates that mesh refinement is only necessary for resolving

inner flame structure, while the spatial length scales associated with the flow need to be captured

on the lowest level of the SAMR hierarchy only.

These results in Fig. 15 are used to further test the effect of coupling the momentum transport,

solved on the coarsest level of the mesh hierarchy, with the scalar transport, solved throughout the

mesh hierarchy. This figure shows the pressure and HCO mass fraction fields for a uniform mesh

simulation with hx = 15µm and a three level SAMR simulation. The finest level on the SAMR

simulation has the same grid size as the uniform mesh simulation, while its coarsest level has a

resolution hx = 60µm that is four times larger. For the SAMR simulation, the pressure field is

shown on the base level in the grid hierarchy, while the mass fraction fields are shown on the finest

level. The results for the two simulations are in very good agreement, showing that mesh refinement

is only necessary to solve the inner flame structure as long as coarsest mesh level is sufficient to

capture the velocity field dynamics.

The results in Table 3 show the spatial convergence rates for this configuration, corresponding
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to the middle frame in Fig. 12, or about 0.3 ms from the start of the simulation. Roughly 4th-order

convergence rate is observed for all variables.

4.4. Computational Expense of the Algorithm Components

Several flame-vortex interaction simulations, referred here as R1 through R6, were performed to

analyze the computational expense of various algorithm components. The computational domain

extent for these simulations is the same as in Section 4.3.2. Runs R1 and R2 are uniform mesh

simulations with 1024×512 and 512×256 grid points, respectively. Runs R3 through R6 are SAMR

simulations with one level of refinement, with the same mesh resolution on the coarse/fine level as

run R2/R1. The fine levels for these runs cover 5%, 7%, 12%, and 30%, respectively, of the coarse

level area.

We implement a time step ratio of 1/2 between successive mesh levels, i.e. ∆tL+1 = ∆tL/2,

with the time step size on the finest mesh level chosen according to RKC scalar diffusion stability

considerations. For R2 and the SAMR simulations R3 through R6 this results in a time step twice

larger compared to the uniform mesh simulation R1. All these runs were advanced for 0.02 ms to

test the computational gains for SAMR. The relative CPU times for the SAMR runs were between

17% − 37% of the computational cost for R1, as shown in Table 4.

Figure 16 shows relative CPU times for runs R2 through R6. For all runs, the computational

expense of Stages 1a, 1c, 3a, and 3c is negligible. Both Stages 1b and 3b involve an elliptic solve for the

pressure field. Most of the computational time is spent in the computation of 1
ρ

Dρ
Dt

during Stage 3b,

while for Stage 1b this term is extrapolated from values at previous time steps. The elliptic system

is solved using the multigrid preconditioners provided by hypre library, and the computational cost

is small compared with the rest of the algorithm.

Stage 2 consumes the majority of the computational time. For a uniform grid simulation (R2)

the time integration of the chemical source term, in Stages 2a and 2c, is nearly equal with the cost

of the RKC scheme for the scalar convection and diffusion terms in Stage 2b. Runs R3 through R6

show an increase in the relative cost of Stage 2b as the refinement area increases. This is due to

the fact that the RKC time integration involves prolongations and restrictions between various grid

levels as well as data exchange between grid patches on the same level. In contrast, Stages 2a and

2c require very little data exchange between the computational grid levels.
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The relative expense of Stages 2a and 2c is expected to increase for more detailed and stiff

kinetic models, compared to the current mechanism. However, the above results suggest that using

shallower grid hierarchies, made possible by high-order discretizations, will allow more efficient

computations through a reduction of data transferred between and across various levels in the grid

hierarchy.

5. Conclusions

This paper introduces a high-order numerical model for the simulation of chemically reacting

flow in the low-Mach number limit. A 4th order (in space) projection algorithm for the momentum

transport is coupled to a 4th order-in-space, 2nd order-in-time scheme for the solution of the equations

of transport of energy and species mass fractions on a block-structured adaptively refined mesh.

Finite differences are used to approximate spatial derivatives.

We develop here high-order stencils for derivatives and interpolation of cell-centered and edge-

centered variables. The correct pairings of order-of-accuracy for derivatives and interpolations,

originally derived for nodal variables in [10], were verified and employed for the new cell- and

edge-centered stencils. An extended stability explicit integrator, RKC, originally employed in an

SAMR configuration for time advancement of a reactive-diffusive system [9], is used here for a flame

simulation employing the low Mach number approximation of the Navier-Stokes equation. The

RKC time-integrator is coupled to a projection scheme to solve the resulting system of differential-

algebraic equations. The projection scheme for the momentum solution adapts a finite-volume

construction from [27] to finite differences, in order to achieve a consistent fourth-order construction

for the pressure (Poisson) solve. The variable coefficient Poisson problem is solved using a conjugate-

gradient method, preconditioned with a multigrid technique in the hypre package [28] to accelerate

the convergence rate.

Canonical advection-diffusion systems and vortex-flame interactions are used to investigate the

performance of the numerical construction. In the advection-diffusion system, analytical shapes

cross several refined grids in a 2D SAMR hierarchy. This test is used to test the efficiency and

stability of the interpolation and derivative stencils as the scalar structure crosses the coarse-fine

grid interfaces. The theoretical convergence rates, 2nd order in time and 4th order in space, are

observed by comparing the numerical and analytical solutions.
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Both 1D and 2D computational domains were used in the flame simulations. These tests involve

methane combustion modeled using a skeletal C1 mechanism. In the 1D configuration, a premixed

flame propagates into a quiescent fresh mixture of fuel and oxidizer, while in the 2D configuration a

vortex pair propels itself into an initially flat premixed flame. The temporal and spatial convergence

rates were confirmed by comparing the solutions obtained with several grid and time step sizes. The

2D configuration is also used to evaluate our approach of solving for the flow field on the coarse level

only, while using mesh refinement to resolve the flame structure. For the configurations of interest,

flow length scales are several times larger compared to finest length scales observed in the scalar

fields. We resolve the velocity field on the lowest level of the SAMR hierarchy and interpolate it to

finer levels to compute the convective term when time-advancing the scalars. This approach requires

an elliptic pressure solve, necessary for the projection scheme, on the coarse level only, making the

projection scheme simple to implement and inexpensive compared with the computational effort

spent in time-advancing the scalars.

The primary reason for constructing a 4th-order SAMR scheme was to reduce the number of cells

in the entire problem, prior to using it with detailed (and stiff) kinetic mechanisms in reacting flow

studies. Based on current results for the computational expense of various algorithm components,

chemistry integration costs are expected to dominate and efficiency/usability gains are tied to using

shallow grid hierarchies and to keeping the number of cells at a “manageable” level, while resolving

the flame structure adequately. Future efforts will be devoted to such problems and will necessarily

exploit massive parallelism in computations.
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Appendix A: Finite-Difference Discretization of the Pressure Equation

We discuss here the derivation of fourth-order finite difference discretization for the variable

coefficient Poisson equation (8) for the pressure field. Consider, for simplicity, a one-dimensional

configuration, with the indices for the cell and edge centers as shown in Fig. 17. The pressure

gradient, ∂p
∂x

, is first computed at face centers using a 4th order approximation:

∂p

∂x

∣∣∣∣
i+ 1

2

=
1

24hx
(pi−1 − 27pi + 27pi+1 − pi+2) (34)

Density is interpolated from cell centers to edge centers using a 6th order stencil [10]. The 4th order

derivative stencil is applied again to the product 1
ρ

∂p
∂x

and results in:

∂

∂x

(
1

ρ

∂p

∂x

)∣∣∣∣
i

=
1

(24hx)
2 (api−3 + bpi−2 + cpi−1 − (a + . . . + f)pi + dpi+1 + epi+2 + fpi+3) (35)

where

a =
1

ρi− 3

2

; b = −

(
27

ρi− 3

2

+
27

ρi− 1

2

)
; c =

27

ρi− 3

2

+
272

ρi− 1

2

+
27

ρi+ 1

2

(36)

f =
1

ρi+ 3

2

; e = −

(
27

ρi+ 3

2

+
27

ρi+ 1

2

)
; d =

27

ρi+ 3

2

+
272

ρi+ 1

2

+
27

ρi− 1

2

A three-cell wide layer is constructed around the computational domain in order to impose

boundary conditions and maintain 4th order accuracy. The pressure gradient is set to zero at the

computational domain boundaries to maintain consistency with the boundary conditions for the

velocity field. Figure 17 shows a detail perpendicular to the xmin boundary. The cell center values

in the outer layer are computed based on a fourth order discretization for the pressure gradient on

the boundary and 5-th order extrapolations for cells (−2) and (−3), namely:

1

24hx

(p−2 − 27p−1 + 27p0 − p1) = 0

p−2 − 5p−1 + 10p0 − 10p1 + 5p2 − p3 = 0 (37)

p−3 − 5p−2 + 10p−1 − 10p0 + 5p1 − p2 = 0

34



leading to

p−3 =
1

22
(−625p0 + 1125p1 − 603p2 + 125p3)

p−2 =
1

22
(−135p0 + 265p1 − 135p2 + 27p3) (38)

p−1 =
1

22
(17p0 + 9p1 − 5p2 + p3)

These values are used to construct the stencils for the grid cell adjacent to the boundary. The

stencil’s orders for the face-centered densities near the boundary are reduced compared to the

interior stencil to limit numerical instabilities associated with wide one-sided stencils. The face-

centered densities ρ3/2 and ρ1/2 are computed using 5th and 4th order stencils, respectively. The

values at (−1/2) and (−3/2) are extrapolated using 3rd order stencils.

ρ3/2 =
1

128
(−5ρ0 + 60ρ1 + 90ρ2 − 20ρ3 + 3ρ4) (39)

ρ1/2 =
1

16
(5ρ0 + 15ρ1 − 5ρ2 + ρ3)

ρ−1/2 =
1

16
(35ρ0 − 35ρ1 + 21ρ2 − 5ρ3)

ρ−3/2 =
1

16
(105ρ0 − 189ρ1 + 135ρ2 − 35ρ3)

The above discretization results in a singular heptadiagonal linear system Ap = b. In order to

ensure its consistenty, it is necessary that the sum of the rhs term projected on the left-null space

of A be identically 0. Specifically, let x be a left-null vector of A, xT ·A = 0, for example computed

using a singular value decomposition (SVD) algorithm. The system Ap = b is consistent if xT b = 0.

The elements of b are a discretized version of the continuity equation (1a) using the provisional

velocity field v̂. Integrating this equation over the computational domain and making use of the

boundary conditions for the provisional velocity field v̂ as outlined in Section 3.4 we obtain

∫

V

(
1

ρ

Dρ

Dt
+ ∇ · v̂

)
dv +

∫

A

(v − v̂) · ndσ =

∫

V

1

ρ

Dρ

Dt
dv +

∫

A

v̂ · ndσ +

∫

A

(v − v̂) · ndσ (40)

=

∫

V

1

ρ

Dρ

Dt
dv +

∫

A

v · ndσ = 0 (41)

Therefore, the boundary conditions for the velocity field need to take into account the left null
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vector x to ensure xT b = 0. Since matrix A changes during the simulation as the density field

evolves in time, the SVD procedure will need to be applied each time step in order to compute

the required discretization for the boundary conditions applied to the velocity field. For 2nd order

discretizations of the variable coefficient Poisson equation (8) the above procedure is not necessary

since the left-null vector components are all equal to 1.

In order to avoid the costly procedure above, we implemented in Section 3.2 a discretization that

effectivelly transforms the left null vector x to unit entries while retaining the 4th order accuracy

for the pressure field.

Appendix B: Cell-centered Stencils for Interpolation and Derivatives

Interpolants

Figure 18 shows a schematic of 1D grid cells on adjacent coarse and fine grid levels. In this figure

cell i1 on the coarse level corresponds to the same computational space as cells i2 − 1 and i2 on the

fine level. The 4th and 6th order interpolation stencils used to interpolate data between coarse and

fine grid levels are provided below.

A Ni
th order, with Ni even, interpolation stencil between coarse fc and fine ff cell-centered

values can be written as

ff,i2 =

Ni/2∑

j=−Ni/2+1

cjfc,i1+j (42)

ff,i2+1 =

Ni/2∑

j=−Ni/2+1

c1−jfc,i1+j

The coefficients for 4th and 6th order interpolations are given in Table 4.

Skewed one-sided interpolation stencils are used for computational cells near the boundary. In

general skewed stencils are wider compared to their centered counterparts in order to achieve the

same discretization order. In order to avoid numerical instabilities, their order is reduced compared

to the stencils used for the interior grid cells. For Ni
th order interior stencils, the order of the
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boundary stencils is Ni − 1:

ff,k =

Ni−1∑

j=0

ck,jfc,j k = 0, 1, 2, . . . (43)

In the expressions above, k is the index for fine grid cells and j for the coarse grid cells. The cell

index abutting the boundary has index 0 for both the coarse and the fine mesh levels. Coefficients

ck,j are given in Tables 5 and 6 for Ni = 4 and Ni = 6, respectively.

The stencils for fine-to-coarse cell centered interpolations are similar to the ones derived for

coarse-to-fine vertex centered interpolations in [10]. For cell centered interpolations in 2D and 3D

configurations (see also Figs. 1 and 2) the one-dimensional stencils are applied succesively in each

coordinate direction.

Interpolations of edge-centered variables, e.g. velocity components, make use of both one-

dimensional cell-centered presented above and vertex-centered stencils [10]. For example, for the

x-velocity in a 2D configuration, in Fig. 2, the coarse field is first interpolated in the y-direction using

1D cell-centered interpolation stencils. The resulting field is then interpolated in the x-direction

using vertex-centered stencils to obtain the x-velocity on a refined mesh level. Methodologies for

other velocity components as well as for 3D configurations are similar.

Derivatives

An Ni
th order, with Ni even, staggered derivative at edge centers in the x-direction (see Fig. 1),

denoted by fractional indices i + 1
2
, based on field values at cell centers, denoted by integer indices,

can be written as

hx ×
∂f

∂x

∣∣∣∣
i+ 1

2

≈

Ni/2∑

k=1

sk (fi+k − fi−k+1) (44)

The 4th order stencil coefficients are s1 = 27
24

and s2 = − 1
24

. At locations near the domain boundaries,

skewed stencils are used. These stencils are set to a lower order compared to their counterparts for

the interior derivatives to avoid numerical instabilities. Assuming i = 0 is the index of the first cell
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center in the computational x-direction, these derivatives are computed as

hx ×
∂f

∂x

∣∣∣∣
− 1

2

≈ −2f0 + 3f1 − f2 (2nd order) (45)

24hx ×
∂f

∂x

∣∣∣∣
1

2

≈ −23f0 + 21f1 + 3f2 − f3 (3rd order)

Derivatives in other computational directions are similar. These stencils are also used to compute

derivatives of edge centered variables computed at either cell centers, e.g. in Stage 2b, or at cell-

vertices, e.g. off-diagonal stress tensor components in Stage 1a, see Section 3.1.
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Figure 1: Staggered grid indices and variable locations.
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Figure 2: Cell topology on consecutive grid levels, L and L + 1. The cell centers are shown with filled symbols and
the × symbols correspond to the coarse grid (L) location of the fine grid (L + 1) cell-centers. The velocity field
components are shown with arrows.
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Figure 5: Left frame: Advection-diffusion of passive scalar based on a “plus” shape. Shaded contours show the
solution on the base level. Right frame: Contour lines of passive scalar Gaussian pulse. The shaded contours
correspond to the solution of the coarse mesh level, and the black contours correspond to the finer mesh level. Both
simulations use a coarse grid with 2562 grid cells and two refined stationary blocks.
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Figure 6: Passive scalar contours for SAMR simulations using 1 and 2 mesh levels. The solutions are shown at a
7/8 time fraction of a full rotation. Black contours correspond to the coarse level runs and blue contours to the
coarse+fine level runs. The coarse grid resolution and fine level blocks are the same as in Fig. 5. The left frame
solution corresponds to a convective CFL=0.025 while for the right frame CFL=0.25. The diffusive CFL is the same
for both simulations, 0.01.
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Figure 7: Passive scalar contours for simulations using uniform and SAMR with 2 mesh levels. The solutions are
shown at a 7/8 time fraction of a full rotation. Black contours correspond to the uniform mesh simulations and blue
contours to the coarse level of the SAMR simulations. The left frame solution corresponds to a 1282 grid points on
the coarse level, while the right frame to 5282 grid points. The uniform mesh and coarse level resolutions are the
same in the corresponding simulations.
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Figure 8: L2 errors for advection-diffusion simulations. Time and spatial convergence rates are shown in the left and
right frames, respectively. Sample 2ndorder (left frame) and 4thorder (right frame) convergence rates are shown with
thick black lines for comparison purposes.
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Figure 9: A sample of major species (left) and radicals (right) mass fraction profiles for a freely propagating stoi-
chiometric CH4-air flame. For the major species only the coarse grid solution is shown. In the right figure, the filled
symbols correspond to the coarse mesh level and the open symbols to the finest mesh level.
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Figure 10: L2 errors for 1D advection-diffusion-reaction simulations using 3 mesh levels. Solutions are advanced with
a time step ∆t = 10−8 for t = 0.2 ms. Errors are measured in a region 1.2Tmin < T < 0.8Tmax, where Tmin = 300 K
and Tmax = 2165 K. Sample 4thorder convergence rates are shown with a thick black line for comparison purposes.
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Figure 11: Schematic of the computational domain for the vortex pair-flame interaction.

Figure 12: Vorticity contours (black lines) and heat release rates (colormap) during the interaction between a vortex
pair and an initially flat premixed flame. The frames correspond to 0.05 ms, 0.3 ms, 0.5 ms from the begining of the
simulation. The simulation employed 2 mesh levels wih 512× 256 grid cells (or hx = hy = 30µm) on the coarse level.
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Figure 13: Left frame: x-velocity and HRR (shown with cgs units) profiles along a centerline slice. Right frame:
vorticity and heat release rate profiles along a slanted slice going through the center of the left vortex and intersecting
the flame at the point closest to the left vortex. These slices are taken at 0.3 ms from the begining of the simulation.
The circles indicate a solution obtained from a uniform mesh run, while the squares indicate one from an equivalent
2-level SAMR simulation.
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Figure 14: Left frame: x-velocity and HCO mass fraction profiles along a centerline slice through the flame. Right
frame: vorticity and HCO mass fraction profiles along a slanted slice going through the center of the left vortex and
intersecting the flame at the point closest to the left vortex. Results correspond to the same time as in Fig. 13.The
circles indicate a solution obtained from a uniform mesh run, while the squares indicate one from an equivalent
2-level SAMR simulation.
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Figure 15: Pressure (blue and green contours) and HCO mass fraction (red and black contours). The blue and red
contours correspond to a SAMR simulation with two levels of refinement and hx = 60µm on the coarse level, while
the green and black contours correspond to a uniform mesh simulation with hx = 15µm. The snapshot corresponds
to 0.5 ms from the beginning of the simulation.
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Figure 16: Computational expense of various algorithm components. The values are relative to the total CPU time
for each corresponding simulation. The setup for these simulations is described in Section 4.4.
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∆t range [s] T ρ u ∇p YCH4
YO2

YCO2
YCH3

YHCO

(50 → 25 → 12.5) × 10−8 2.02 2.04 2.10 2.30 2.02 2.02 1.95 2.00 2.30
(25 → 12.5 → 6.25) × 10−8 2.06 2.07 2.10 2.50 2.05 2.05 2.02 2.03 1.67

(12.5 → 6.25 → 3.125) × 10−8 2.07 2.08 2.08 2.30 2.05 2.06 2.05 2.04 1.83

Table 1: Temporal convergence rates for M = 16 for 1D simulations on a uniform mesh with ∆x = 7.5µm. Solutions
are advanced for t = 0.4 ms and errors are measured in a region 1.2Tmin < T < 0.8Tmax. Tmin = 300 K is the fresh
mixture temperature and Tmax = 2165 K is the temperature if the burnt gases.

∆t range [s] T ρ u ∇p YCH4
YO2

YCO2
YCH3

YHCO

(50 → 25 → 12.5) × 10−8 1.92 1.92 1.97 1.58 1.92 1.91 1.85 1.94 1.53
(25 → 12.5 → 6.25) × 10−8 2.01 2.01 2.02 1.84 2.00 1.99 1.97 2.00 1.48

(12.5 → 6.25 → 3.125) × 10−8 2.07 2.07 2.07 1.96 2.05 2.05 2.05 2.05 1.84
(6.25 → 3.125 → 1.5625) × 10−8 2.17 2.18 2.17 2.01 2.13 2.13 2.16 2.12 1.94

Table 2: Temporal convergence rates for M = 8 for 1D simulations using 3 mesh levels and a C1-mechanism. The
grid size on the coarse mesh level is ∆x = 30µm. Solutions are advanced for t = 0.4 ms and errors are measured in
a region 1.2Tmin < T < 0.8Tmax. Tmin and Tmax are defined in Table 1.

∆x range [µm] T ρ u v ∇px ∇py YCH4
YO2

YCO2
YCH3

YHCO

15 → 30 → 60 3.9 4.0 3.8 3.7 3.8 3.7 3.9 3.9 3.9 3.9 4.1

Table 3: Spatial convergence rates for 2D vortex-pair flame interactions using 2 level mesh and a C1-mechanism.
Solutions are advanced with a time step ∆t = 2× 10−8 s and errors are measured after t = 0.3 ms from the begining
of the simulations.

R3 R4 R5 R6
% CPU time R1 17 18 21 37

Table 4: Relative CPU times for a sequence of SAMR simulations with one refinement level (R3-R6), compared to
a uniform mesh run (R1).

j -2 -1 0 1 2 3
4th cj × 128 - -7 105 35 -5 -
6th cj × 8192 77 -693 6930 2310 -495 63

Table 5: 4th and 6th order interior stencil coefficients for interpolation of cell-centered values from coarse to fine mesh
levels.
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j 0 1 2 3
c0,j × 128 195 -117 65 -15
c1,j × 128 77 77 -33 7
c2,j × 128 15 135 -27 5

Table 6: 3rd order boundary stencil coefficients for interpolation of cell-centered values from coarse to fine mesh
levels.

j 0 1 2 3 4 5
c0,j × 8192 13923 -13923 15470 -10710 4095 -663
c1,j × 8192 4389 7315 -6270 3990 -1463 231
c2,j × 8192 663 9945 -3978 2210 -765 117
c3,j × 8192 -231 5775 3850 -1650 525 -77
c4,j × 8192 -117 1365 8190 -1638 455 -63

Table 7: 5th order boundary stencil coefficients for interpolation of cell-centered values from coarse to fine mesh
levels.
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